Almost Classical Skew Bracoids and the Yang-Baxter Equation

Isabel Martin-Lyons

The Interplay Between Skew Braces and Hopf-Galois Theory, Keele $30^{\text{th}}\text{-}31^{\text{st}}$ of July 2024

Skew bracoids that correspond to Hopf-Galois structures on almost classical extensions lead to solutions to the Yang-Baxter equation in the manner outlined earlier.

Question

What is special about these solutions?

1 Fundamental Definitions and Examples

1 Fundamental Definitions and Examples

2 Almost classical skew bracoids

3) The γ -function and solutions to the Yang-Baxter Equation

Definition

A skew (left) brace is a triple (G, \star, \cdot) , where (G, \star) and (G, \cdot) are groups and for all $g, h, f \in G$

$$g \cdot (h \star f) = (g \cdot h) \star g^{-1} \star (g \cdot f).$$

Definition

A skew (left) bracoid is a 5-tuple $(G, \cdot, N, \star, \odot)$, where (G, \cdot) and (N, \star) are groups and \odot is a transitive action of G on N for which

$$g \odot (\eta \star \mu) = (g \odot \eta) \star (g \odot e_N)^{-1} \star (g \odot \mu),$$

for all $g \in G$ and $\eta, \mu \in N$.

- We will frequently write (G, N, \odot) or (G, N), for $(G, \cdot, N, \star, \odot)$.
- We will refer to (N, ⋆) as the additive group and (G, ·) as the multiplicative or acting group.
- Any identity will be denoted *e*, possibly with a subscript.

Examples

- If (G, ·) is a group then (G, ·, ·) and (G, ·o^p, ·) are skew braces, the so-called *trivial* and *almost trivial* skew braces on G.
- Any skew brace (G, ⋆, ·) can be thought of as a skew bracoid (G, ·, G, ⋆, ⊙), where ⊙ is simply ·. If (G, N) is a skew bracoid with Stab_G(e_N) trivial we say that (G, N) is essentially a skew brace.
- For any group G we have the skew bracoid (G, {e}, ☉) where of course the action ⊙ is trivial.

Examples

• Let $d, n \in \mathbb{N}$ such that d|n. Take $G = \langle r, s \mid r^n = s^2 = e, srs^{-1} = r^{-1} \rangle \cong D_{2n}$ and $N = \langle \eta \rangle \cong C_d$. Then we get a skew bracoid (G, N, \odot) for \odot given by $r^i s^j \odot \eta^k = \eta^{i+(-1)^{jk}}$.

Fundamental Definitions and Examples

3) The γ -function and solutions to the Yang-Baxter Equation

Definition

We say that a skew bracoid (G, N) contains a brace if the subgroup

 $S = \operatorname{Stab}_G(e_N)$ has a complement H in G, so that G = HS.

This is equivalent to saying that G contains a subgroup H for which (H, N) is essentially a skew brace.

Definition

A skew bracoid (G, N) is almost a skew brace if the subgroup $S = \text{Stab}_G(e_N)$ has a normal complement H in G, so that $G = HS \cong H \rtimes S$.

Definition

A skew bracoid (G, N) is almost classical if the subgroup $S = \text{Stab}_G(e_N)$ has a normal complement H in G, and when thought of as a skew brace, (H, N) is trivial. Hereafter we will say that such a (H, N) is essentially trivial.

This is saying that when the operation in H is transferred to N, via $h \mapsto h \odot e_N$, it coincides with the original operation in N. Explicitly this means, for all $h_1, h_2 \in H$

$$(h_1 \odot e_N) \star (h_2 \odot e_N) = h_1 h_2 \odot e_N,$$

and consequently

$$(h_1 \odot e_N)^{-1} = h_1^{-1} \odot e_N.$$

Members of our Dihedral Cyclic Family

Example

Consider $(G, N) \cong (D_{2n}, C_d)$, using $r^i s^j \odot \eta^k = \eta^{i+(-1)^{jk}}$. Then $S = \operatorname{Stab}_G(e_N) = \langle r^d, s \rangle$ since $r^i s^j \odot e_N = \eta^i$.

	n	d	S	Contains	Is Almost	Almost Classical
(1)	24	4	$\langle r^4, s \rangle$	X	X	×
(2)	12	6	$\langle r^6,s angle$	$\langle r^4, rs \rangle$	X	×
(3)	12	4	$\langle r^4, s \rangle$	$\langle r^6, rs angle$		$\langle r^3 \rangle$
(4)	n	n	$\langle s angle$			$\langle r \rangle$
(5)	n even	п	$\langle s angle$		$\langle \mathit{r}^2, \mathit{rs} angle$	$\langle r angle$

1 Fundamental Definitions and Examples

2 Almost classical skew bracoids

3 The γ -function and solutions to the Yang-Baxter Equation

The $\gamma\text{-function}$

Definition/Proposition

Given a skew bracoid $(G, \cdot, N, \star, \odot)$, we define the map $\gamma : (G, \cdot) \to \operatorname{Perm}(N, \star)$, sending g to γ_g , by

$$\gamma_{g}(\eta) = (g \odot e_{N})^{-1} \star (g \odot \eta),$$

for $g \in G$ and $\eta \in N$.

Then γ is in fact a homomorphism, with image in Aut(N, \star). We call this map the γ -function of the skew bracoid.

Recall that this is the backbone of the route from a skew bracoid to a solution to the Yang-Baxter equation.

The γ -function of an almost classical skew bracoid

Let (G, N) be an almost classical skew bracoid with H such that $G \cong H \rtimes S$ and (H, N) is essentially a trivial skew brace.

Let $h, h_{\eta} \in H$ and $s \in S$ then,

$$egin{aligned} \gamma_{hs}(h_\eta \odot e_N) &= (hs \odot e_N)^{-1} \star (hs \odot (h_\eta \odot e_N)) \ &= (h \odot e_N)^{-1} \star (hsh_\eta \odot e_N) \ &= (h^{-1} \odot e_N) \star (hsh_\eta s^{-1} \odot e_N) \ &= sh_\eta s^{-1} \odot e_N. \end{aligned}$$

So we conjugate by the S part and the H part acts trivially.

Example

In the $G = \langle r, s \rangle \cong D_{2n}$ acting on $N = \langle \eta \rangle \cong C_n$ example, using $R = \langle r \rangle$, we have $\gamma_{r^i s^j}(\eta^k) = s^j r^k s^{-j} \odot e_N = \eta^{(-1)^j k}$.

The Yang-Baxter Equation

Definition

A solution to the set-theoretic Yang-Baxter equation (hereafter simply a solution) is a non-empty set G, together with a map $\mathbf{r}: G \times G \to G \times G$ satisfying

$$(\mathbf{r} \times 1)(1 \times \mathbf{r})(\mathbf{r} \times 1) = (1 \times \mathbf{r})(\mathbf{r} \times 1)(1 \times \mathbf{r})$$

as functions on $G \times G \times G$.

Given a solution r on G, for all $x, y \in G$ we write

$$\boldsymbol{r}(\boldsymbol{x},\boldsymbol{y}) = (\lambda_{\boldsymbol{x}}(\boldsymbol{y}),\rho_{\boldsymbol{y}}(\boldsymbol{x}));$$

so that we have family of maps $\lambda_x: G \to G$ and a family of maps

 $\rho_{\mathbf{y}}: \mathbf{G} \to \mathbf{G}.$

Suppose G with r is a solution and write $r(x, y) = (\lambda_x(y), \rho_y(x))$. We say this solution is:

- *bijective* if **r** is bijective;
- *left non-degenerate* if λ_x is bijective for all $x \in G$;
- right non-degenerate if ρ_y is bijective for all $y \in G$;
- non-degenerate if r is both left and right non-degenerate.

Solutions from skew bracoids

Let (G, N) be a skew bracoid that contains a brace (H, N). We have that the map $a : h \mapsto h \odot e_N$ is a bijection between H and N, we write b for its inverse. Recall that with this we can define

$$\lambda_x(y) = b(\gamma_x(y \odot e_N))$$

and then

$$\rho_y(x) = \lambda_x(y)^{-1} x y,$$

for all $x, y \in G$.

This λ and ρ form a Lu-Yan-Zhu pair so that G with $\mathbf{r}(x, y) = (\lambda_x(y), \rho_y(x))$ forms a (right non-degenerate but possibly left degenerate) solution.

A matched product

Given this setup, we have that

- *H* with *r* is a bijective non-degenerate solution the one coming from the (essentially a) skew brace (*H*, *N*);
- and restricting to S we have

$$\lambda_{s_1}(s_2) = b(\gamma_{s_1}(s_2 \odot e_N)) = e_G, \qquad \rho_{s_2}(s_1) = s_1 s_2.$$

for $s_1, s_2 \in S$, so we get an entirely left degenerate sub-solution - if you like, the one coming from the skew bracoid $(S, \{e\})$.

In general, the solution on G is a matched product of these two sub-solutions. This via $\alpha : S \to \text{Perm}(H)$ and $\beta : H \to \text{Perm}(S)$ given by $\alpha_h(s) = (\rho_{h^{-1}}(s^{-1}))^{-1}$ and $\beta_s(h) = \lambda_s(h)$.

Solutions from almost a skew brace

If the skew bracoid (G, N) is almost a skew brace, so our complement H to S is normal in G, the actions $\alpha : S \to \text{Perm}(H)$ and $\beta : H \to \text{Perm}(S)$ are transparently the actions of S on H and H on S within G. For $s \in S$ and $h \in H$ we have,

$$eta_s(h) = \lambda_s(h) = b((s \odot e)^{-1}(s \odot (h \odot e))) = b(sh \odot e) = shs^{-1}.$$

and

$$\begin{aligned} \alpha_h(s) &= (\rho_{h^{-1}}(s^{-1}))^{-1} \\ &= (\lambda_{s^{-1}}(h^{-1})^{-1}s^{-1}h^{-1})^{-1} \\ &= ((s^{-1}h^{-1}s)^{-1}s^{-1}h^{-1})^{-1} \\ &= (s^{-1}hss^{-1}h^{-1})^{-1} \\ &= s \end{aligned}$$

Isabel Martin-Lyons

Almost classical solutions

Suppose (G, N) is almost classical due to a subgroup H of G, i.e. (H, N) is essentially trivial. Taking $h_1, h_2 \in H$ and $s_1, s_2 \in S$, the solution arising from (G, N) is the given by

$$\begin{split} \lambda_{h_1 s_1}(h_2 s_2) &= b(\gamma_{h_1 s_1}(h_2 \odot e_N)) \\ &= b(s_1 h_2 s_1^{-1} \odot e_N) \\ &= s_1 h_2 s_1^{-1}, \\ \rho_{h_2 s_2}(h_1 s_1) &= s_1 h_2^{-1} s_1^{-1} h_1 s_1 h_2 s_2. \end{split}$$

Note that restricting to H we recover the solution given by

$$\lambda_{h_1}(h_2) = h_2, \qquad \rho_{h_2}(h_1) = h_2^{-1}h_1h_2,$$

which is a solution coming from the group H.

Isabel Martin-Lyons

Almost Classical Running Example

Example

In our $(G, N) \cong (D_{2n}, C_n)$ example taking the complement $R = \langle r \rangle$ we have

$$\lambda_{r^{i}s^{j}}(r^{k}s^{\ell}) = s^{j}r^{k}s^{-j}$$
$$= r^{(-1)^{j}k},$$

and

$$\rho_{r^k s^\ell}(r^i s^j) = s^j r^{-k} s^{-j} r^i s^j r^k s^\ell$$
$$= r^{-(-1)^j k + i + (-1)^j k} s^{j+\ell}$$
$$= r^i s^{j+\ell}.$$

Hence G with $\mathbf{r}(r^i s^j, r^k s^\ell) = (r^{(-1)^{jk}}, r^i s^{j+\ell})$ is a solution.

Almost a skew brace Running Example

Example

Suppose now that *n* is even and take the complement $H = \langle r^2, rs \rangle$ to *S* in $G \cong D_{2n}$.

It is convenient to transfer the operation from N onto H. To do this note that

$$b(\eta) = rs$$
, $b(\eta^2) = r^2$, $b(\eta^3) = r^3s$, $b(\eta^4) = r^4$, ...

so we may think of H as a subgroup of $C_n \times C_2$ with rs as a generator.

Then the action of G on H can be thought of as $r^i s^j \odot (rs)^k = (rs)^{i+(-1)^j k}$, essentially as before.

Almost a skew brace Running Example

Example

Then with the skew bracoid written (G, H) we have,

$$\begin{split} \lambda_{r^{i}s^{j}}(r^{k}s^{\ell}) &= b(\gamma_{r^{i}s^{j}}((rs)^{k})) \\ &= b((rs)^{(-1)^{j}k}) \\ &= b(r^{(-1)^{j}k}s^{(-1)^{j}k}) \\ &= r^{(-1)^{j}k}s^{k}, \\ \rho_{r^{k}s^{\ell}}(r^{i}s^{j}) &= \lambda_{r^{i}s^{j}}(r^{k}s^{\ell})^{-1}r^{i}s^{j}r^{k}s^{\ell} \\ &= s^{k}r^{-(-1)^{j}k}r^{i+(-1)^{j}k}s^{j+\ell} \\ &= r^{(-1)^{k}i}s^{j+k+\ell}. \end{split}$$

Hence G with $\mathbf{r}(r^i s^j, r^k s^\ell) = (r^{(-1)^j k} s^k, r^{(-1)^k i} s^{j+k+\ell})$ is a solution.

Reduction in solutions

Consider the subgroup $K = \ker(\odot)$ of G, this is a subgroup of S. Simply restricting to K, we get the relations are the same as in S, meaning K with r is also a solution. But moreover, for $k \in K$ and all $hs \in G$, we have

$$\lambda_k(hs) = h,$$
 $\rho_{hs}(k) = h^{-1}khs,$
 $\lambda_{hs}(k) = e_G,$ $\rho_k(hs) = hsk.$

Proposition

If (G, N) contains a brace (resp. is almost a brace or almost classical) then the reduced form (G/K, N) is contains a brace (resp. is almost a brace or almost classical).

- What does all this mean for the study of solutions using skew bracoids?
- I didn't give the solutions coming from the non-reduced skew bracoids, partially because they were a pain - especially in general am I (still) missing something?
- How is the solution on a skew bracoid related to the solution on its reduced form?

Thank you for your attention!